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Collective modes and correlations in one-component plasmas
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The static and time-dependent potential and surface charge correlations in a plasma with a boundary are
computed for different shapes of the boundary. The case of a spheroidal or spherical one-component plasma is
studied in detail because experimental results are available for such systems. Also, since there is some knowl-
edge, both experimental and theoretical, about the electrostatic collective modes of these plasmas, the time-
dependent correlations are computed using a method involving these m®#i863-651X97)15502-1

PACS numbs(s): 52.25.Kn, 05.20-y, 52.35.Fp, 52.25.Wz

I. INTRODUCTION large length scalgsas the sum of the contributions from all
the thermally excited collective modé& was found some

The static correlations between charged particles in clagime ago that this approach does work in the very simple
sical plasmas at equilibrium have attracted some theoreticgpecial case of a plane boundary without a magnetic field
attention[1]. For a plasma with a boundary, the surface[12]); this will be done in Sec. lll. This method for comput-
charge correlations are especially interesting, because théjg the static correlations also gives the time-dependent cor-
are universal, in that sense that they do not depend on th&lations.
detail of the microscopic constitution of the plasma, for
length scales large compared to the microscopic q2és
(although these correlations do depend on the geometry of
the boundary.

Experimentally[3,4], classical plasmas in thermal equilib- It should be emphasized that the calculations of this sec-
rium, with a boundary, have been obtained by confining partion are based on macroscopic electrostatics, and give results
ticles of one sign in a Penning or Paul trap. These particlesvhich are valid only on macroscopic length scales. There-
may be electrons or ions. In a Penning trap, a magnetic fielébre, these calculations cannot account for the shell or crystal
along thez axis confines the particules radially, while an structures which have been obserydg] for plasmas in a
electric field due to suitable electrodes provides the axiaPenning trap and reproduced by computer simulat{dds
confinement. In a Paul trap, the confinement is provided byrhe present calculations apply to correlations smoothed on
an electrostatic potential and a radio frequency field. In bothmicroscopic oscillations. The surface of the plasma has mi-
cases, one obtains a system which behaves like a oneroscopic oscillations responsible of the creation of an excess
component plasma: a system of particles of one sign im—or a lack— of electric charge near the surface, which at a
mersed in a neutralizing uniform backgroufid the experi-  macroscopical level can be seen as a surface charge density.
ments, the confining fields play the role of the background Therefore, the surface charge densitywhich will be con-

The particles form a blob of spheroidal shape. In the case dfidered here should be understood as a microscopic volume
a Penning trap, the blob performs a rigid rotation around theharge density integrated along the normal to the surface,
z axis, and it is in the corotating frame that it behaves like aand smoothed in directions parallel to the surface.

static one-component plasma in a magnetic field; however, if As explained in Sec. |, a plasma confined in a Penning

the rotation frequency is just half the cyclotron frequencytrap behaves, in a rotating frame, like a static spheroidal

(the Brillouin regime, the system behaves like a one- one-component plasma submitted to a uniform magnetic
component plasma without a magnetic field. Some electrofield along its axis. We assume that the Debye length is

static modes of such spheroidal plasmas have been exciteduch smaller than the plasma dimensions: this condition en-
and their frequencies experimentally measui®d8], and a  sures that the spheroid has a well-defined surface, and that
theoretical discussion about all the modes has been madke spheroid size is macroscopic.

[9-11]. It is well known that in classical statistical mechanics a

These experimental findings are an incentive for applyingnagnetic field has no effect on the static quantities. Thus we
the general theorf2] of surface charge correlations to sphe-shall compute the stati@qual-timé correlations of a sphe-
roidal plasmas; this will be done in Sec. Il. Furthermore,roidal one-component plasma in the absence of a magnetic
since there is some knowledge about the electrostatic colledield. The results will also be applicable to the case with a
tive modes, it is desirable to check in a variety of cases thamagnetic field.
the static charge correlations can be correctly obtaiiwed We use the method of Ref2]. Surface charge correla-

tions can be derived from electric field correlations by con-
sidering the discontinuity of the normal electric field across

Il. STATIC CORRELATIONS
IN A SPHEROIDAL PLASMA

*Electronic address: tellez@stat.th.u-psud.fr the surface of the plasma. The two-point electric potential
fLaboratoire associeau Centre National de la Recherche correlations can be computed on a macroscopic scale by us-
Scientifique-URA D0063. ing linear response theory and macroscopic electrostatics.
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Let us put a test charggatr. At some point’, the potential

1
B<q>(f)®(f')>T=|——aQo(b/d)- (2.5

changes®(r’) due only to the plasma is related by linear r—r’'|
response to the potential correlation at thermal equilibrium,
SD(r')=— BgD(ND(r"))T, (2.1  If r’ is outside but is still inside the plasma, the potential

change atr’ created by the surface chargeis equal to

whereB=(kgT) "%, with T the temperature ari; the Boltz-  9Qo(£'/d)/d. So in that case we have
-mann constant, andAB)" means the truncated average
(AB)—(A)(B).

The potential changeS®(r’) can be computed using
screening properties of the plasma and macroscopic electro-
static arguments, provided thiat—r’| is large compared to
the screening length. From now on we shall assume that thi§ r andr’ are both outside the plasma the potential change
condition is satisfied. atr’ isq[G(r,r')—|r—r’|"1], whereG(r,r') is the poten-

If the test charge is inside the plasma, it would be comdial atr’ when a unit charge is put atoutside the insulated
pletely screened. Conversely, if the particle is outside, it willspheroidal conductoG is given by[15]
not be screened, but the plasma will change its configuration

1 1
BOOP()) === GQu(Eld). (26

in a special way, as we will see below. We will be able to 17 n n—m)! 2
compute the potential chan@)(r’)3 and therefore _the po- G(r,r')= —E (2n+1 E er(—1)m ( :
tential and surface charge correlations. In a certain way the = (n+m)!
screening dictates the form of the correlations functions, in e m
particular the surface charge correlation which, as stated xXcogm(gp— ') 1Py (7)Pr(7")
above, is related to the surface oscillation. Incidentally, we P™(b/d)

will see that the surface charge correlation has a decay —QM(&/d)QM(&'/d) = n

slower than the volume charge correlation inside the plasma; 3 Qn(b/d)

this means that the screening at the surface is not as strong as
it is in the bulk of the plasma.

Now let us consider the particular case of an insulated
spheroidal plasma. We consider a ellipsoid of revolution
around thez axis. Let 2 be its axial length and 2 its
diameter. Letd>=b?—a?. Then|d| is the distance between
the foci of the spheroid. I82>0, then the spheroid is pro-
late; otherwise it is oblate. We use spheroidal coordinates

(&,7m,0) defined by

[an(§/d)Qnm(§’/d) if e<¢’
PI(&'/d)QM(&ld)  if &'<¢

N Qo(£/d)Qo(£'/d)
Qo(brd)

(2.7)

where P and Q)" are associated Legendre functions of the
first and second kinds, respectively, agg=2— 6, is the

x=[(&—d?)(1- 5?1 %cosp, Neumann  factor. The P](&/d)Qr(€'/d) or
Pr(¢'/d)Q)(&/d) terms in Eq. 2.7 come from an expansion
y=[(&2—d?)(1- %) ]Y%sing, (2.2) of [r—r’|~%, and finally the electric potential correlation is
given by
z=¢n.
. 1 ! (n—m)!]?
The boundary between the plasma and the vacuum is theyB(<I>(r)<b(r’)>T=62 (2n+1) > ey(—1)™ |
the spheroidal surface defined by n=1 m=0 (n+m)!
£=b. 2.3 xcogm(é—¢")IPR(n)PR(7)
Pr(b/d)

Let us consider first the case wharandr’ are inside the XQN(ED)QN(E )=
plasma. Due to the plasma’s screening properties the charge Qn'(b/d)’
g atr will be surrounded by a polarization cloud of micro-
scopic dimensions carrying a chargey, giving to ®(r’) a
contribution —qg/|r—r’|. Since the plasma is insulated a
charge+ q spreads on the surface of the sphergidb. This
surface charge gives &P (r') another contribution equal to (o(r )= 2<(Eout(r —E"(r))
g/C, with the capacitanc€ given by[15]

(2.9

The surface charge correlation is

d ><<Eﬁ”‘<r'>—EL?(r'))>T, (2.9
C= —Qo(b/d)’ (2.9

WhereEi,?'("“‘)(r) denotes the limit of the normal component
whereQy is a Legendre function of second kind. Using the of the electric field whem approaches the surface from the
total S®(r') in Eq. (2.1) gives, forr andr’ inside the spher- inside (outsidg. Using expression&.5), (2.6), and(2.8) for
oid, the electric potential correlations, we find
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PN T 1 b?—d? PNT
Blool ) == G A Bla(ra(r) ———E emcogm(¢—¢')]
PG(r,r') f*”kK m/ (k&)
- X ————F——cogk(z—2")]dk.
e , , (2.10 o a Ky(ka gk(z—2")]
r,r’ e surface
(2.15
which finally gives
- Ill. COLLECTIVE MODES AND CORRELATIONS
Ba(r)o(r')) . . L
When the microscopic detail is disregarded, the thermal
1 fluctuations are expected to be correctly described by the set

= 2 72 22 a2 12 of collective modes. If each collective modeis considered

(4m)*dV(b*—d*7")(b*~d*»"®) as a harmonic oscillator of frequenay,, the electric poten-

zw: Z (n— tial associated with this mode is of the form

X (2n+1)em——- Pm(n)P (n") R
n=1 m=0 ( +m)| [q)n(r)eflwnt_i_q)n(r)eJrlwnt]/\/E’ (31)
my
n /d)cos{m(d) 1. (2.11) with an amplitude ofb, such that the corresponding average
Qn(b/d) energy iskgT, at temperaturél. Then the time-displaced

potential correlation will be
In the case of a globally neutral spherafdy(r))=0, and the
truncation ;ignT may be Qmitted. <q)(r,t)q)(rr,tr)>T:Re2 <m)¢n(rr)>efiw(tft’),
From this last expression we can recover the charge cor- n
relation for some particular geometries. For example] if 3.2
goes to zero, we have the case of a spherical plasma. In that
limt b becomes the radius of the sphere andgng thedc%orrelaEtlczg ;;mctlons of the other functions can be
my m o . _ eauced from Eq
Cc;‘m(ebsld)/Q”(b/d) (n+1)d/b; then Eq. (2.11 be In the general case#t’, expression3.2) is expected to
depend on the magnetic field applied to the plasma. How-
w 1 ever, the static limit=t" should be magnetic field indepen-
dent.
Blo(n)a(r)T= (4w ) Z 2:0 (2n+1)(n+1) The explicit calculation of Eq.(3.2) for a spheroidal
plasma in a magnetic field would involve complicated ex-
Y e (n_m)!Pm( P n') pressions which are not very illuminating. Therefore, only
"(n+m)! " KUY the special cas@) of a spherical plasma without a magnetic
, field is considered here. However, as exercises, we consider
xcogm(o—¢')]. (212 simpler models, with magnetic field, on which it can be ex-
licitly checked that the static limit=t’ is field indepen-
The sum can be performed to give the already known resu@em. These models a(B), a plasma along a plane boundary

[2,16] in a magnetic field normal to the boundary, a@j a two-
dimensional plasméwith two-dimensional logarithmic Cou-
T 1 1 lomb interactionsin a disk with a magnetic field normal to
Blo(r)a(r'))'=— g7 3 +_ » (213 the plasma plane.
(Zsmi
A. Spherical plasma without magnetic field
wherea is the angle betweenandr’. In this section we consider a spherical one-component

Another special case is the cylindrical geometry obtainedglasma of radiusR composed of particles of mass and
taking the limitb—oo; thena is the radius of the cylinder. In  chargeq in a uniform charged background with charge den-
that case it is interesting to defitlke=n/b. The sum oven sity —qngy, without a magnetic field. Experimentally this
timesb~! becomes an integral ovés, b/d~1+ (a?/2b?),  could be achieved in a Penning trap in the Brillouin regime

n~z/b, and using the asymptotic expansions (in the rotating frame the plasma behaves as an unmagne-
tized plasmaor in a Paul tragas stated above, the confining
QM(b/d)~ (in)™K (ka), (2.143 fields play the role of the uniform neutralizing background

We use spherical coordinates, §,¢). We compute the
time-dependent correlations which can be seen as the sum of
(2.14h  contributions from different collective modes, each one os-
cillating at its own frequency. It should be noted that the
time-dependent correlations can also be computed by a gen-
where theK,,, are modified Bessel function of the third kind, eralization of the linear response method explained in Sec. I,
we find now using the dynamical linear response theory.

2 1/2 T
an(”)N(ﬁ) nmcos{(n—m)g—kz,
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The linearized equations of motion for the electric poten- lim ®(r)= lim &(r), (3.6b
tial ®, the volume charge densipy, and the current density rR* rR™
j inside the plasma are
€0, P(R™,0,0)=0,P(R",6,9). (3.60
AD=—47p, (3.3a9
Equations(3.4), (3.5), and(3.6) have two types of solutions:
i w2 (1) Surface modes: fore#0, ¢ satisfies the Laplace
—=— Pyo, (3.3b equation inside and outside the plasma. One finds modes
. Am (3.1) with
ap Ar'YR(9,4) if r<R
—=-V.], 3.3 D,(r)= ) 3.
at ’ (3:39 ") AR I YR(0,¢) if r>R 5.7
where w,=(4mg?ny/m)*2 is the plasma frequency. We and
look for a mode of frequency. Manipulating equations
(3.3, we find for®, inside the plasma, the equation n
2_ 2_ 2
W =on=5 7 wp, (3.8
eAD=0, (3.4

wheren andm are integersi{>0 and|m|<n), andY} are
wheree=1— wglwz. The equation forb outside the plasma the spherical harmonics.
is the usual Laplace equation Equating the average potential energy of this mode to
kgT/2 gives the average squared amplitude

Ad=0. (3.5

4
B<|An|2>:W- (3.9
The problem has been reduced to the electrostatic problem of
a dielectric filling the sphere of radil& Equationg3.4) and

(3.5 must be supplemented with the boundary conditions  Using the time-displaced analog of £g.9), one find that
the surface modes contribute to the time-dependent surface

®—0 whenr—+oo, (3.6a  charge correlatiogo(r,t)o(r’,t’))" a term
|
2n+1)2 _— 2n+1 _—
R 2| A ) Y6, )V, 67 Comon(t—t ) =Ks TS Ser (0, ) V(8Os —t').
nm (477) nm 47TR
(3.10
|
(2) Volume modes: wher=0, then w?=w}. There is , — ,
now an infinite number of modes for each,ift): ®°"'=0 zy (la, [, (), (r")cosmp(t—t")
and any ®"=f(r)Y (6,¢) with f(R)=0 is acceptable.
However, a complete basis fab™" can be chosen as the _ -1 FRPTLY L
eigenfunctions of the Laplacian with Dirichlet boundary con- 47TkBT27 Ay DT () cosup(t=t')
ditions:
=—4mkgT Gp(r,r’)coswy(t—t'), (3.12
where Gy, is the Green function of the Laplacian with Di-
<I>"‘(r)=2y a,f(r), (3.1)  richlet boundary conditions on the sphere,
r R |7t
GD(r,r’)zﬂ ﬁr’—?r —[r=r'|7. (3.13
with Af_=x_f,, f.(R,6,4)=0, and[|f (r)|?dr=1.

Equating the average potential energy of each mode to
kgT/2, we find,8<|ay|2>= —4m/\,. So the contribution of Finally the contribution of the volume modes to
the volume modes t¢® (r,t)P(r’,t"))T is (a(r,t)a(r’,t"))" is found to be
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kgT 1 ) D (x,y,00)=d(x,y,0"), (3.20b

872 @R sina/2)? Ot t), (19
€39,P(x,y,07)=09,P(x,y,0"). (3.200

where « is the angle between andr’. Putting Eqs.(3.10
and (3.14) together

2n+1
Blo(r,0a(r ,1)T=2 2—=5Y7(6,¢)

XYN(O',¢')cosw,(t—t")

1 1

+W W COS’Up(t—t’).
(3.15

For t=t’ the sum in Eq.3.15 can be performed and we
recover the static resu(.13.

Let us first consider the casg/e3<0 which give modes
with a frequency in the ranges<qw|<min(w,,Q) called
magnetized plasma modes and max(Q)<|o|
<0,=(w5+0?"2 called upper hybrid modes.

We look for a mode of the form

for z<0

(AeikHZ+ Be*ikHZ)eikL-ri
(3.21

¢k(r):[(A+B)e‘kLZe”‘iU for z>0,
Wherek=kl+kH2, with k, in the xy plane,k, =|k,| and
r,=(x,y,0). The Laplace equatiof3.19 is satisfied for
z>0, and Eq.(3.17 gives the dispersion relation

2

1— o

B. Plasma in a half space with a magnetic field )
w2—02 k “=0

©p
. - 1-— k”2+ (3.22
Let us consider now a one-component plasma filling the 0]
half spacez<0 with a uniform magnetic field in the direc-
tion, B=B2Z. Sum rules for the time-dependent correlationsSOlving this equation we find two modes: one upper hydrid
have been obtained for this case using the dynamical linedpode with frequency», , and one magnetized plasma mode
response theonf17]. Here we use the collective mode With frequencyw . :

method to find expressions for correlations that are valid

macroscopically. This collective mode method has been used »,

in the caseB=0 in [12]; here we extend it to the cad®

#0. With the same notation as in Sec. Ill A, the linearized

equations of motion now are

AD=—47p, (3.16a
9 _ wéV(I) OjXxz 3.16
T T2, P T Xz, (3.16b
Py, 3.16
-V (3.1609

where(Q)=qB/m is the cyclotron frequency.
As above we look for a mode with frequenay. From
Egs.(3.16, we find, for® inside the plasma,

V-eV®=0, (3.17

1 k2
_21.2 24 2 2N2_1.202 [
wL=7 0T Q°E| (0°+ Q%) 4w ) _ﬁkl K

1/2}

(3.23

Equation(3.209 gives a relation between the incident and
reflected amplitude# andB,

A —l-e€e3t2iegV—€1/€e3

B l-€1€3

(3.29

It should be noted thd#a/B|=1: there is total reflection on
the surfacez=0.

The energy of this mode is a quadratic formads/ot and
®. In the particular casB=0 this quadratic form is diago-
nal [12], which means that the potential and kinetic energies
have equal averages and by the energy equipartition theorem
each average ikgT/2 (this was the case in Sec. II)AIf
B+ 0, the potential and kinetic average energies are different

where e is now the plasma dielectric tensor defined in Car-(take for example the simple case of a single charged parti-

tesian coordinates by

€, —ie; 0
e=| 12 e 0] (3.18
0 0 €3

with €;=1-w)/(0?~Q?), &=Qow}/[w(0?*-0?)], and
€3= 1—wf,/w2. As to ® outside the plasmaz{=0), it obeys

AD=0. (3.19

cule with a circular trajectory in the plane normal to a mag-
netic field when the whole energy is kineticaBut we can
still use the energy equipartition theorem and say that the
total average energy of each mode is equatg®.

The total average energy for a large volumMef plasma
is found to be

(|A1%k, 2 Q%05 (20°~ O~ wf)

(B=V o (02— 0220’ w?)

(3.29

Equating(E) to kgT gives the average squared amplitude

We now have the problem of an anisotropic dielectric filling {|Al?) of the mode.

the z<0 half space. The boundary conditions are

®—-0 whenz—+», (3.20a

Finally these modes will give a contribution to the electric
potential time-dependent correlatiod® (r,t)d(r’,t"))7
equal to
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BCoa(k, ,2,2",®)

d3k , )
Vf (27T)§[<q)k,+(r)q)k,+(r )>COS&)+(t_t )
2

+(Dy (NP _(r)cosw_(t-1)], (326 = ok e e otk ale)z-2)]

where @, , is the electric potential for the upper hybrid

mode, andb _ the potential for the magnetized mode. T 1— €163
To this contribution we must add the one from the pos-

sible modes in the range mia(,Q)<|w|<max(w,,Q),

called evanescent modes. In this cagée;>0, and we look

for a solution of the form

((1+ €1e3)codk, (—€;/€3) 4z +2")]

+2e3(— €1/ e3)Y%sink, (— e/ ex)YAz+2')])|.

(3.31h
celuntialalur if z2<0 (c) If z<0 andz'>0,
(I)ki(r)_ cekiri—kz jf 7>0. (3.27)
. 4 e .7
This form satisfies Eqg3.17), (3.19, (3.20a, and (3.20b. BCaa(ky 2.2, 0)== 07—
Equation (3.200 implies e3<0 and e;e3=1. This means i 2
that we have an evanescent mode onlf2i w,, with fre- X(—sin(— e /e3)"k, 2]
quency given byw?= w3=(Q?+ w3)/2. To compute|C|?) +es(—eyles)t?
we proceed to compute the average total energy of the mode,
and equate it witlkgT. In this case the energy is proportional xcog(—e;/e3)Y%k, z]).
to the surfaces of the boundary between the plasma and the
> i (3.319
vacuum. We finally find
In the case)<w, we must add tg3Cqq(k, ,2,2', ) the
2 L
o 2T wp -0 term corresponding to the evanescent mode:
AICH =351 —2— (3.28
™ o w0+ St wg)
— + +
This mode adds a contribution (@b (r,t)®(r’,t"))" equal k. wp (w—we)+ 6w+ we
to
exd —k, (z+2')] if z>0 andz'>0
d’k, — 2,02
i 1 31 oy +Q
S j G PN (ot @29 p(kL G o] o< andzi<o
2
In Eq. (3.26 it is convenient to make a change of variable in “’p+9 o . ,
the integral ovek and have an integral oves. In this way exp k. wf,—QZZ z i 2<0 andz’>0.
we can express the electric potential correlation (3.32

(B(r,t)®(r’,t"))T in terms of its Fourier transform

Coo(k, ,2,2',0) with respect to time and the andy co-  From these expressions we can compute the surface charge

ordinates: correlation, using Eq(2.9). The surface charge correlation
Fourier transform is found to be

<<1>(r,t)d><r’ )T

SE= (K, ) 4k, (1—e5)?
oo W)=
2 )Zf dow Coa(k, ,2,2',0) - wey(— €1/ €)' (1—€1€3)
k w?
@ ie(t=t") ik (r, —=r]) (3.30 +ﬁ52_p—92(5(w—we)+ o+ we)).
P
Coa(k, 22" ,0)=0 if |w| e Imin(w,,Q), (3.33

max(w,,Q)[U]Q,,+* [except maybe atw=*w, if
Q<w,. If o is notin that range, the following apply
(a) If z>0 andz’'>0,

The last term is to be included only whéh<w, .

Now, let us briefly show how these results can be
obtained using dynamical linear response. If we set an
oscillating charge densityd(z—z")exdi(k, -1, —wt)] at
e ki(z+2') z=27', the electric potential change atz is
ok, 1—e€1€3 ' x(k, ,z,z",w)exdi(k, -r, —wt)]. The response functioy

(3.318 s related to the Fourier transfor@gq(k, ,2,2’,») of the
time-dependent correlatiotd (r,t)®(r’,t’))" in the non-
(b) If z<0 andz’' <0, perturbed system by the fluctuation-dissipation theorem:

463 (_ 61/63)1/2

ﬁqflll(kL ,Z,Z,,w): -
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. ) 1 ) through the two-dimensional Coulomb potentialnr. We
BCoo(k, 22", 0)=— %'mX(kL 22',0), (334 |90k for modes with frequency. The dielectric formalism
, , is also valid in this case. Only the definition of the plasma
and x(ky 2.2, 0)=W(k, ,2,2",0)-2mexd—K [z frequency is slightly changedw,=(2mq’ny/m)¥2 The
—Z'|)/k, , whereV is the total electric potential solution, due equation for the potentiab inside the disk is
to the plasma and the external charge, of
€,AP=0, (3.39

V-eV[¥(k, 2,2 ,w)e k)]
while outside the disk it is the usual Laplace equation. In

=—4mdé(z—z")exdi(k -r, )], (3.39  polar coordinatesr(6) the boundary conditions are
wheree is the_dielectric tensor given by Eq3._1_& if z<O0, ®—-0 when r— +os, (3.408
or equal to 1 ifz>0, and the boundary conditiori8.20.
Solving equation3.35 gives the following results foy lim ®(r)= lim ®(r), (3.40n
(a) If z<0 andz’' <0, r—RT r—R™
112 112 . - +
c 27 € K €1 - 7| IP(R™,0) i IP(R ,H)Z&QD(R ,0)
x(kp 2.2 0)= 3= k, 63 € ex 1 e £ €1 ar 2" a0 ar '
1— € 1@ y ( El> 12 (3.4OO
T T e K o As in Sec. Il A, there are two types of solutions:
6 . , :
L+ esyer/es 3 (1) If e,#0, ® satisfies the Laplace equation inside and
X(z+2') | —exd —k,|z-2'|]|. (3.363  Outside the disk,
Armem? i r<Rr
(b) If z>0 andz’ <0, (=) 5 gemlp-lnigme it =g G4D
2m 2 and there are two possibles frequencies for each integer
x(k, ,2,Z',0)=—| ———
Lo Ki |1+ esv/eq /€5 (m#0), o=sgnMm)w. , where sgnn) denotes the sign of
12 m, and
xexg —k, z+| —| k. Z'
p[ * . ] w.=(—0*=02+20d)/2. (3.42
—exd —k, |z— Zfﬂl_ (3.36h  Equating the total average energy of the modéd® gives
) 1 o'
() If z>0 andz’>0, B Aml)= TMRE o — " (3.43
(K 2,2 w)= 2m 1_63— Ver/eg ex] —k, (z+2)]. wherew is the frequency of the mode, aed the other root
Ki 1+ e3ve;/eg of Eq. (3.42. The contribution from these modes to
(3.360  {(a(r,t)a(r’,t"))is
From these expressions it is easy to verify that E3334) |m|em(#=6")
leads to Eqgs(3.31) and(3.32, and therefore both methods kBTE ———
give the same results. Furthermore, fert’, Eq.(3.34 and (TR0, —w-) '
the Kramers-Kronig relation X[w, et some_(t=t) _ ) e=isgtmo. (t=t')]

(3.44
+>Imy(k, ,z,2',w)
mRex(k,,2,2',0)= PJ . 7‘1“’ (2 If €,=0, w?=w’+0? and anyd satisfies Eq(3.39
(3.37)  inside the disk. However, writing> as a Fourier series in
e'™? boundary condition€3.40 and Laplace equation for

give the well-known static correlatioli2] @ outside the disk implies thab=0 outside the disk. The
B(D(r)d(r"))T situation is similar to the one in Sec. Il A @ can be writ-
ten in the base of the eigenfunctions of the Laplacian, with
[lr=r'|7t ifz<0o0rz'<0 Dirichlet conditions on the boundary. Then equating the av-
- [r,—r. |2+ (z+2)?] ¥ if z>0 andz’ >0, erage total energy of each modekgT and following the

(3.38 calculations from Sec. Il A 2, we find the contribution from

kA
which is, as expected, independent of the presence of th {pese modes o (r, e (r',t))
magnetic field. 2
—ZkaTQZ ZGD(r r')cog (wj+ Q%) M(t—t")],
(3.45
Here we consider the model of a two-dimensional one-

component plasma in a disk of radiRswith a magnetic field whereGp now is the Green function of the Laplacian with
normal to the plane where the disk lies. The particles interadDirichlet boundary conditions on the disk:

C. Plasma in a disk with a magnetic field
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1 ) For t=t’, the sum in Eq(3.48 can be performed and the
Gp(r,r')= E[In|r—r’|—|n|r—(R/r’) r'|]. static resulf2], independent of the magnetic fieRl is re-
(3.46  covered,

In two dimensions there is another mode corresponding to
0=0. The dielectric formalism does not applies hees (

diverges wherw=0). Dealing directly with the equations of B{a(r)o(r'))T=— itk (3.49
motion, we can show thab =0 outside the disk. Then the 8( szinE)

contribution of this mode can be computed in the same way
as in the case €,=0. The contribution to
(P(r,t)d@(r’,t"))" is found to be
02 IV. CONCLUSION

—ZﬂTkBTWeD(I’,I”). (347) ) . )
Wp Since one-component plasmas have been obtained experi-

mentally, it would be interesting if the static or dynamical

Putting together all contributions gives d
gtog 9 correlations could be measured and compared to the expres-

|m|eim(e=6") sions obtained here. It should be noted that our calculations
Bla(r,tyo(r' ,t)T=> 7 give only the dominant term of the expansion of the correla-
m (TR)(w;—w_) ) . . .
tions in powers of the distanaebetween the points. It has
X[w, e sgnimyw_(t—t) been shown that there are other terms in the asymptotic ex-
pansion[18] of the time-dependent correlatioribehaving
—_e P sImo. (=t like r~8 for the potential correlations in an infinite plasma

s 2 2 12 These algebraic corrections vanish in the static case.
0%+ wgeog (0p+ Q%) 7 (t—t')]

Q%+ cu,zJ
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