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Collective modes and correlations in one-component plasmas

Gabriel Téllez*
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The static and time-dependent potential and surface charge correlations in a plasma with a boundary are
computed for different shapes of the boundary. The case of a spheroidal or spherical one-component plasma is
studied in detail because experimental results are available for such systems. Also, since there is some knowl-
edge, both experimental and theoretical, about the electrostatic collective modes of these plasmas, the time-
dependent correlations are computed using a method involving these modes.@S1063-651X~97!15502-7#

PACS number~s!: 52.25.Kn, 05.20.2y, 52.35.Fp, 52.25.Wz
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I. INTRODUCTION

The static correlations between charged particles in c
sical plasmas at equilibrium have attracted some theore
attention @1#. For a plasma with a boundary, the surfa
charge correlations are especially interesting, because
are universal, in that sense that they do not depend on
detail of the microscopic constitution of the plasma, f
length scales large compared to the microscopic ones@2#
~although these correlations do depend on the geometr
the boundary!.

Experimentally@3,4#, classical plasmas in thermal equilib
rium, with a boundary, have been obtained by confining p
ticles of one sign in a Penning or Paul trap. These partic
may be electrons or ions. In a Penning trap, a magnetic fi
along thez axis confines the particules radially, while a
electric field due to suitable electrodes provides the a
confinement. In a Paul trap, the confinement is provided
an electrostatic potential and a radio frequency field. In b
cases, one obtains a system which behaves like a
component plasma: a system of particles of one sign
mersed in a neutralizing uniform background~in the experi-
ments, the confining fields play the role of the backgroun!.
The particles form a blob of spheroidal shape. In the cas
a Penning trap, the blob performs a rigid rotation around
z axis, and it is in the corotating frame that it behaves lik
static one-component plasma in a magnetic field; howeve
the rotation frequency is just half the cyclotron frequen
~the Brillouin regime!, the system behaves like a on
component plasma without a magnetic field. Some elec
static modes of such spheroidal plasmas have been ex
and their frequencies experimentally measured@5–8#, and a
theoretical discussion about all the modes has been m
@9–11#.

These experimental findings are an incentive for apply
the general theory@2# of surface charge correlations to sph
roidal plasmas; this will be done in Sec. II. Furthermo
since there is some knowledge about the electrostatic co
tive modes, it is desirable to check in a variety of cases
the static charge correlations can be correctly obtained~on
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large length scales! as the sum of the contributions from a
the thermally excited collective modes~it was found some
time ago that this approach does work in the very sim
special case of a plane boundary without a magnetic fi
@12#!; this will be done in Sec. III. This method for compu
ing the static correlations also gives the time-dependent
relations.

II. STATIC CORRELATIONS
IN A SPHEROIDAL PLASMA

It should be emphasized that the calculations of this s
tion are based on macroscopic electrostatics, and give re
which are valid only on macroscopic length scales. The
fore, these calculations cannot account for the shell or cry
structures which have been observed@13# for plasmas in a
Penning trap and reproduced by computer simulations@14#.
The present calculations apply to correlations smoothed
microscopic oscillations. The surface of the plasma has
croscopic oscillations responsible of the creation of an exc
—or a lack— of electric charge near the surface, which a
macroscopical level can be seen as a surface charge de
Therefore, the surface charge densitys which will be con-
sidered here should be understood as a microscopic vol
charge density integrated along the normal to the surfa
and smoothed in directions parallel to the surface.

As explained in Sec. I, a plasma confined in a Penn
trap behaves, in a rotating frame, like a static sphero
one-component plasma submitted to a uniform magn
field along its axis. We assume that the Debye length
much smaller than the plasma dimensions: this condition
sures that the spheroid has a well-defined surface, and
the spheroid size is macroscopic.

It is well known that in classical statistical mechanics
magnetic field has no effect on the static quantities. Thus
shall compute the static~equal-time! correlations of a sphe
roidal one-component plasma in the absence of a magn
field. The results will also be applicable to the case with
magnetic field.

We use the method of Ref.@2#. Surface charge correla
tions can be derived from electric field correlations by co
sidering the discontinuity of the normal electric field acro
the surface of the plasma. The two-point electric poten
correlations can be computed on a macroscopic scale by
ing linear response theory and macroscopic electrosta
3400 © 1997 The American Physical Society
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55 3401COLLECTIVE MODES AND CORRELATIONS IN ONE- . . .
Let us put a test chargeq at r . At some pointr 8, the potential
changedF(r 8) due only to the plasma is related by line
response to the potential correlation at thermal equilibriu

dF~r 8!52bq^F~r !F~r 8!&T, ~2.1!

whereb5(kBT)
21, with T the temperature andkB the Boltz-

-mann constant, and̂AB&T means the truncated averag
^AB&2^A&^B&.

The potential changedF(r 8) can be computed usin
screening properties of the plasma and macroscopic ele
static arguments, provided thatur2r 8u is large compared to
the screening length. From now on we shall assume that
condition is satisfied.

If the test charge is inside the plasma, it would be co
pletely screened. Conversely, if the particle is outside, it w
not be screened, but the plasma will change its configura
in a special way, as we will see below. We will be able
compute the potential changedF(r 8), and therefore the po
tential and surface charge correlations. In a certain way
screening dictates the form of the correlations functions
particular the surface charge correlation which, as sta
above, is related to the surface oscillation. Incidentally,
will see that the surface charge correlation has a de
slower than the volume charge correlation inside the plas
this means that the screening at the surface is not as stro
it is in the bulk of the plasma.

Now let us consider the particular case of an insula
spheroidal plasma. We consider a ellipsoid of revolut
around thez axis. Let 2b be its axial length and 2a its
diameter. Letd25b22a2. Then udu is the distance betwee
the foci of the spheroid. Ifd2.0, then the spheroid is pro
late; otherwise it is oblate. We use spheroidal coordina
(j,h,f) defined by

x5@~j22d2!~12h2!#1/2cosf,

y5@~j22d2!~12h2!#1/2sinf, ~2.2!

z5jh.

The boundary between the plasma and the vacuum is
the spheroidal surface defined by

j5b. ~2.3!

Let us consider first the case wherer and r 8 are inside the
plasma. Due to the plasma’s screening properties the ch
q at r will be surrounded by a polarization cloud of micro
scopic dimensions carrying a charge2q, giving todF(r 8) a
contribution 2q/ur2r 8u. Since the plasma is insulated
charge1q spreads on the surface of the spheroidj5b. This
surface charge gives todF(r 8) another contribution equal to
q/C, with the capacitanceC given by @15#

C5
d

Q0~b/d!
, ~2.4!

whereQ0 is a Legendre function of second kind. Using t
total dF(r 8) in Eq. ~2.1! gives, forr andr 8 inside the spher-
oid,
,
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b^F~r !F~r 8!&T5
1

ur2r 8u
2
1

d
Q0~b/d!. ~2.5!

If r 8 is outside butr is still inside the plasma, the potentia
change atr 8 created by the surface chargeq is equal to
qQ0(j8/d)/d. So in that case we have

b^F~r !F~r 8!&T5
1

ur2r 8u
2
1

d
Q0~j8/d!. ~2.6!

If r and r 8 are both outside the plasma the potential chan
at r 8 is q@G(r ,r 8)2ur2r 8u21#, whereG(r ,r 8) is the poten-
tial at r 8 when a unit charge is put atr outside the insulated
spheroidal conductor.G is given by@15#

G~r ,r 8!5
1

d(n50

`

~2n11! (
m50

n

em~21!mF ~n2m!!

~n1m!! G2
3cos@m~f2f8!#Pn

m~h!Pn
m~h8!

3F2Qn
m~j/d!Qn

m~j8/d!
Pn
m~b/d!

Qn
m~b/d!

1H Pn
m~j/d!Qn

m~j8/d! if j,j8

Pn
m~j8/d!Qn

m~j/d! if j8,j
G

1
Q0~j/d!Q0~j8/d!

Q0~b/d!
, ~2.7!

wherePn
m andQn

m are associated Legendre functions of t
first and second kinds, respectively, andem522dm0 is the
Neumann factor. The Pn

m(j/d)Qn
m(j8/d) or

Pn
m(j8/d)Qn

m(j/d) terms in Eq. 2.7 come from an expansio
of ur2r 8u21, and finally the electric potential correlation
given by

b^F~r !F~r 8!&T5
1

d(n51

`

~2n11! (
m50

n

em~21!mF ~n2m!!

~n1m!! G
2

3cos@m~f2f8!#Pn
m~h!Pn

m~h8!

3Qn
m~j/d!Qn

m~j8/d!
Pn
m~b/d!

Qn
m~b/d!

. ~2.8!

The surface charge correlation is

^s~r !s~r 8!&T5
1

~4p!2
^„En

out~r !2En
in~r !…

3„En
out~r 8!2En

in~r 8!…&T, ~2.9!

whereEn
in,(out)(r ) denotes the limit of the normal compone

of the electric field whenr approaches the surface from th
inside~outside!. Using expressions~2.5!, ~2.6!, and~2.8! for
the electric potential correlations, we find
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3402 55G. TÉLLEZ
b^s~r !s~r 8!&T52
1

~4p!2
b22d2

A~b22d2h2!~b22d2h82!

3
]2G~r ,r 8!

]j]j8
U
r ,r8Psurface

, ~2.10!

which finally gives

b^s~r !s~r 8!&T

52
1

~4p!2dA~b22d2h2!~b22d2h82!

3 (
n51

`

(
m50

n

~2n11!em
~n2m!!

~n1m!!
Pn
m~h!Pn

m~h8!

3
Qn
m8~b/d!

Qn
m~b/d!

cos@m~f2f8!#. ~2.11!

In the case of a globally neutral spheroid,^s(r )&50, and the
truncation signT may be omitted.

From this last expression we can recover the charge
relation for some particular geometries. For example, id
goes to zero, we have the case of a spherical plasma. In
limit b becomes the radius of the sphere a
Qn
m8(b/d)/Qn

m(b/d)→2(n11)d/b; then Eq. ~2.11! be-
comes

b^s~r !s~r 8!&T5
1

~4p!2b3(n51

`

(
m50

n

~2n11!~n11!

3em
~n2m!!

~n1m!!
Pn
m~h!Pn

m~h8!

3cos@m~f2f8!#. ~2.12!

The sum can be performed to give the already known re
@2,16#

b^s~r !s~r 8!&T52
1

8p2b3 F 1

S 2sina2 D 3 1
1

2G , ~2.13!

wherea is the angle betweenr and r 8.
Another special case is the cylindrical geometry obtain

taking the limitb→`; thena is the radius of the cylinder. In
that case it is interesting to definek5n/b. The sum overn
times b21 becomes an integral overk, b/d;11(a2/2b2),
h;z/b, and using the asymptotic expansions

Qn
m~b/d!;~ in !mKm~ka!, ~2.14a!

Pn
m~h!;S 2

np D 1/2nmcosF ~n2m!
p

2
2kzG , ~2.14b!

where theKm are modified Bessel function of the third kind
we find
r-

at

lt

d

b^s~r !s~r 8!&T52
1

8p3 (
m50

`

emcos@m~f2f8!#

3E
0

1`k

a

Km8~ka!

Km~ka!
cos@k~z2z8!#dk.

~2.15!

III. COLLECTIVE MODES AND CORRELATIONS

When the microscopic detail is disregarded, the therm
fluctuations are expected to be correctly described by the
of collective modes. If each collective moden is considered
as a harmonic oscillator of frequencyvn , the electric poten-
tial associated with this mode is of the form

@Fn~r !e
2 ivnt1Fn~r !e

1 ivnt#/A2, ~3.1!

with an amplitude ofFn such that the corresponding avera
energy iskBT, at temperatureT. Then the time-displaced
potential correlation will be

^F~r ,t !F~r 8,t8!&T5Re(
n

^Fn(r !Fn~r 8!&e2 iv~ t2t8!,

~3.2!

and the correlation functions of the other functions can
deduced from Eq.~3.2!.

In the general casetÞt8, expression~3.2! is expected to
depend on the magnetic field applied to the plasma. Ho
ever, the static limitt5t8 should be magnetic field indepen
dent.

The explicit calculation of Eq.~3.2! for a spheroidal
plasma in a magnetic field would involve complicated e
pressions which are not very illuminating. Therefore, on
the special case~A! of a spherical plasma without a magnet
field is considered here. However, as exercises, we cons
simpler models, with magnetic field, on which it can be e
plicitly checked that the static limitt5t8 is field indepen-
dent. These models are~B!, a plasma along a plane bounda
in a magnetic field normal to the boundary, and~C! a two-
dimensional plasma~with two-dimensional logarithmic Cou
lomb interactions! in a disk with a magnetic field normal to
the plasma plane.

A. Spherical plasma without magnetic field

In this section we consider a spherical one-compon
plasma of radiusR composed of particles of massm and
chargeq in a uniform charged background with charge de
sity 2qn0, without a magnetic field. Experimentally thi
could be achieved in a Penning trap in the Brillouin regim
~in the rotating frame the plasma behaves as an unma
tized plasma! or in a Paul trap~as stated above, the confinin
fields play the role of the uniform neutralizing background!.

We use spherical coordinates (r ,u,f). We compute the
time-dependent correlations which can be seen as the su
contributions from different collective modes, each one
cillating at its own frequency. It should be noted that t
time-dependent correlations can also be computed by a
eralization of the linear response method explained in Sec
now using the dynamical linear response theory.
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55 3403COLLECTIVE MODES AND CORRELATIONS IN ONE- . . .
The linearized equations of motion for the electric pote
tial F, the volume charge densityr, and the current density
j inside the plasma are

DF524pr, ~3.3a!

] j

]t
52

vp
2

4p
¹F, ~3.3b!

]r

]t
52¹• j , ~3.3c!

where vp5(4pq2n0 /m)
1/2 is the plasma frequency. W

look for a mode of frequencyv. Manipulating equations
~3.3!, we find forF, inside the plasma, the equation

eDF50 , ~3.4!

wheree512vp
2/v2. The equation forF outside the plasma

is the usual Laplace equation

DF50 . ~3.5!

The problem has been reduced to the electrostatic proble
a dielectric filling the sphere of radiusR. Equations~3.4! and
~3.5! must be supplemented with the boundary condition

F→0 when r→1`, ~3.6a!
e
n

-

of

lim
r→R1

F~r !5 lim
r→R2

F~r !, ~3.6b!

e] rF~R2,u,f!5] rF~R1,u,f!. ~3.6c!

Equations~3.4!, ~3.5!, and~3.6! have two types of solutions
~1! Surface modes: foreÞ0, F satisfies the Laplace

equation inside and outside the plasma. One finds mo
~3.1! with

Fnm~r !5HAnr
lYn

m~u,f! if r,R

AnR
2l11r2 l21Yn

m~u,f! if r.R
~3.7!

and

v25vn
25

n

2n11
vp
2 , ~3.8!

wheren andm are integers (n.0 andumu<n), andYn
m are

the spherical harmonics.
Equating the average potential energy of this mode

kBT/2 gives the average squared amplitude

b^uAnu2&5
4p

~2n11!R2n11 . ~3.9!

Using the time-displaced analog of Eq.~2.9!, one find that
the surface modes contribute to the time-dependent sur
charge correlation̂s(r ,t)s(r 8,t8)&T a term
(
nm

~2n11!2

~4p!2
R2n22^uAnu2&Yn

m~u,f!Yn
m~u8,f8!cosvn~ t2t8!5kBT(

nm

2n11

4pR3Yn
m~u,f!Yn

m~u8,f8!cosvn~ t2t8!.

~3.10!
i-

o

~2! Volume modes: whene50, thenv25vp
2 . There is

now an infinite number of modes for each (n,m): Fout50
and anyF in5 f (r )Yn

m(u,f) with f (R)50 is acceptable.
However, a complete basis forF in can be chosen as th
eigenfunctions of the Laplacian with Dirichlet boundary co
ditions:

F in~r !5(
g

ag f g~r !, ~3.11!

with D f g5lg f g , f g(R,u,f)50, and* u f g(r )u2dr51.
Equating the average potential energy of each mode

kBT/2, we findb^uagu2&524p/lg . So the contribution of
the volume modes tôF(r ,t)F(r 8,t8)&T is
-

to

(
g

^uagu2& f g~r ! f g(r 8)cosvp~ t2t8!

524pkBT(
g

lg
21f g~r ! f g(r 8)cosvp~ t2t8!

524pkBTGD~r ,r 8!cosvp~ t2t8!, ~3.12!

whereGD is the Green function of the Laplacian with D
richlet boundary conditions on the sphere,

GD~r ,r 8!5
1

4pFU rR r 82
R

r
rU21

2ur2r 8u21G . ~3.13!

Finally the contribution of the volume modes t
^s(r ,t)s(r 8,t8)&T is found to be
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3404 55G. TÉLLEZ
kBT

8p2

1

„2R sin~a/2!…3
cosvp~ t2t8!, ~3.14!

wherea is the angle betweenr and r 8. Putting Eqs.~3.10!
and ~3.14! together

b^s~r ,t !s~r 8,t8!&T5(
n,m

2n11

4pR3Yn
m~u,f!

3Yn
m(u8,f8)cosvn~ t2t8!

1
1

8p2

1

„2Rsin~a/2!…3
cosvp~ t2t8!.

~3.15!

For t5t8 the sum in Eq.~3.15! can be performed and w
recover the static result~2.13!.

B. Plasma in a half space with a magnetic field

Let us consider now a one-component plasma filling
half spacez,0 with a uniform magnetic field in thez direc-
tion, B5Bẑ. Sum rules for the time-dependent correlatio
have been obtained for this case using the dynamical lin
response theory@17#. Here we use the collective mod
method to find expressions for correlations that are va
macroscopically. This collective mode method has been u
in the caseB50 in @12#; here we extend it to the caseB
Þ0. With the same notation as in Sec. III A, the lineariz
equations of motion now are

DF524pr, ~3.16a!

] j

]t
52

vp
2

4p
¹F1V j3 ẑ, ~3.16b!

]r

]t
52¹• j , ~3.16c!

whereV5qB/m is the cyclotron frequency.
As above we look for a mode with frequencyv. From

Eqs.~3.16!, we find, forF inside the plasma,

¹•e¹F50, ~3.17!

wheree is now the plasma dielectric tensor defined in C
tesian coordinates by

e5S e1 2 i e2 0

i e2 e1 0

0 0 e3
D , ~3.18!

with e1512vp
2/(v22V2), e25Vvp

2/@v(v22V2)#, and
e3512vp

2/v2. As toF outside the plasma (z.0), it obeys

DF50 . ~3.19!

We now have the problem of an anisotropic dielectric filli
the z,0 half space. The boundary conditions are

F→0 when z→1`, ~3.20a!
e

s
ar

d
ed

-

F~x,y,02!5F~x,y,01!, ~3.20b!

e3]zF~x,y,02!5]zF~x,y,01!. ~3.20c!

Let us first consider the casee1 /e3,0 which give modes
with a frequency in the ranges 0,uvu,min(vp ,V) called
magnetized plasma modes and max(vp ,V),uvu
,Vu5(vp

21V2)1/2 called upper hybrid modes.
We look for a mode of the form

Fk~r !5H ~Aeik iz1Be2 ik iz!eik'•r' for z,0

~A1B!e2k'zeik'•r' for z.0,
~3.21!

wherek5k'1kiẑ, with k' in the xy plane,k'5uk'u and
r'5(x,y,0). The Laplace equation~3.19! is satisfied for
z.0, and Eq.~3.17! gives the dispersion relation

S 12
vp
2

v2D ki
21S 12

vp
2

v22V2D k'
250 . ~3.22!

Solving this equation we find two modes: one upper hyd
mode with frequencyv1 , and one magnetized plasma mo
with frequencyv2 :

v6
2 5

1

2 Fvp
21V26S ~v21V2!224vp

2V2
ki
2

k'
21ki

2D 1/2G .
~3.23!

Equation~3.20c! gives a relation between the incident an
reflected amplitudesA andB,

A

B
5

212e1e312i e3A2e1 /e3
12e1e3

. ~3.24!

It should be noted thatuA/Bu51: there is total reflection on
the surfacez50.

The energy of this mode is a quadratic form of]F/]t and
F. In the particular caseB50 this quadratic form is diago
nal @12#, which means that the potential and kinetic energ
have equal averages and by the energy equipartition theo
each average iskBT/2 ~this was the case in Sec. III A!. If
BÞ0, the potential and kinetic average energies are differ
~take for example the simple case of a single charged p
cule with a circular trajectory in the plane normal to a ma
netic field when the whole energy is kinetical!. But we can
still use the energy equipartition theorem and say that
total average energy of each mode is equal tokBT.

The total average energy for a large volumeV of plasma
is found to be

^E&5V
^uAu2&k'

2

2p

V2vp
2~2v22V22vp

2!

~v22V2!2~v22vp
2!
. ~3.25!

Equating^E& to kBT gives the average squared amplitu
^uAu2& of the mode.

Finally these modes will give a contribution to the elect
potential time-dependent correlation̂F(r ,t)F(r 8,t8)&T

equal to
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55 3405COLLECTIVE MODES AND CORRELATIONS IN ONE- . . .
VE d3k

~2p!3
@^Fk,1~r )Fk,1~r 8!&cosv1~ t2t8!

1^Fk,2(r )Fk,2~r 8!&cosv2~ t2t8!#, ~3.26!

where Fk,1 is the electric potential for the upper hybr
mode, andFk,2 the potential for the magnetized mode.

To this contribution we must add the one from the po
sible modes in the range min(vp ,V),uvu,max(vp ,V),
called evanescent modes. In this casee1 /e3.0, and we look
for a solution of the form

Fk'
~r !5HCeik'•r'1Ae1 /e3k'z if z,0

Ceik'•r'2k'z if z.0.
~3.27!

This form satisfies Eqs.~3.17!, ~3.19!, ~3.20a!, and ~3.20b!.
Equation ~3.20c! implies e3,0 and e1e351. This means
that we have an evanescent mode only ifV,vp , with fre-
quency given byv25ve

25(V21vp
2)/2. To computê uCu2&

we proceed to compute the average total energy of the m
and equate it withkBT. In this case the energy is proportion
to the surfaceS of the boundary between the plasma and
vacuum. We finally find

b^uCu2&5
2p

Sk'

vp
22V2

vp
2 . ~3.28!

This mode adds a contribution tôF(r ,t)F(r 8,t8)&T equal
to

SE d2k'

~2p!2
^Fk'

(r )Fk'
~r 8!&cosve~ t2t8!. ~3.29!

In Eq. ~3.26! it is convenient to make a change of variable
the integral overki and have an integral overv. In this way
we can express the electric potential correlat
^F(r ,t)F(r 8,t8)&T in terms of its Fourier transform
CFF̃(k' ,z,z8,v) with respect to time and thex andy co-
ordinates:

^F~r ,t !F~r 8,t8!&T

5E d2k'

~2p!2
E

2`

1`

dv CFF̃~k' ,z,z8,v!

3e2 iv~ t2t8!1 ik'•~r'2r'8 !. ~3.30!

CFF̃(k' ,z,z8,v)50 if uvuP]min(vp ,V),
max(vp ,V)@ø#Vu ,1` @except maybe atv56ve if
V,vp . If v is not in that range, the following apply

~a! If z.0 andz8.0,

bCFF̃~k' ,z,z8,v!52
4e3
vk'

~2e1 /e3!
1/2

12e1e3
e2k'~z1z8!.

~3.31a!

~b! If z,0 andz8,0,
-

e,

e

bCFF̃~k' ,z,z8,v!

52
2

vk'e3~2e1 /e3!
1/2Fcos@k'~2e1 /e3!

1/2~z2z8!#

2
1

12e1e3
~~11e1e3!cos@k'~2e1 /e3!

1/2~z1z8!#

12e3~2e1 /e3!
1/2sin@k'~2e1 /e3!

1/2~z1z8!# !G .
~3.31b!

~c! If z,0 andz8.0,

bCFF̃~k' ,z,z8,v!52
4

vk'

e2k'z8

12e1e3

3~2sin@~2e1 /e3!
1/2k'z#

1e3~2e1 /e3!
1/2

3cos@~2e1 /e3!
1/2k'z# !.

~3.31c!

In the caseV,vp we must add tobCFF̃(k' ,z,z8,v) the
term corresponding to the evanescent mode:

p

k'

vp
22V2

vp
2 „d~v2ve!1d~v1ve!…

35
exp@2k'~z1z8!# if z.0 and z8.0

expS k'

vp
21V2

vp
22V2~z1z8! D if z,0 and z8,0

expFk'S vp
21V2

vp
22V2 z2z8D G if z,0 and z8.0.

~3.32!

From these expressions we can compute the surface ch
correlation, using Eq.~2.9!. The surface charge correlatio
Fourier transform is found to be

bCss̃~k' ,v!52
4k'~12e3!

2

ve3~2e1 /e3!
1/2~12e1e3!

1
k'

4p

vp
2

vp
22V2 „d~v2ve!1d~v1ve!….

~3.33!

The last term is to be included only whenV,vp .
Now, let us briefly show how these results can

obtained using dynamical linear response. If we set
oscillating charge densityd(z2z8)exp@i(k'•r'2vt)# at
z5z8, the electric potential change atz is
x(k' ,z,z8,v)exp@i(k'•r'2vt)#. The response functionx
is related to the Fourier transformCFF̃(k' ,z,z8,v) of the
time-dependent correlation̂F(r ,t)F(r 8,t8)&T in the non-
perturbed system by the fluctuation-dissipation theorem:
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bCFF̃~k' ,z,z8,v!52
1

pv
Imx~k' ,z,z8,v!, ~3.34!

and x(k' ,z,z8,v)5C(k' ,z,z8,v)22pexp@2k'uz
2z8u#/k' , whereC is the total electric potential solution, du
to the plasma and the external charge, of

¹•e¹@C~k' ,z,z8,v!ei ~k'•r'!#

524pd~z2z8!exp@ i ~k'•r'!#, ~3.35!

wheree is the dielectric tensor given by Eq.~3.18! if z,0,
or equal to 1 ifz.0, and the boundary conditions~3.20!.

Solving equation~3.35! gives the following results forx
~a! If z,0 andz8,0,

x~k' ,z,z8,v!5
2p

k'
F 1e3 S e3

e1
D 1/2expF2k'S e1

e3
D 1/2uz2z8uG

1
12e3

21Ae3 /e1

11e3Ae1 /e3
expF2k'S e1

e3
D 1/2

3~z1z8!G2exp@2k'uz2z8u#G . ~3.36a!

~b! If z.0 andz8,0,

x~k' ,z,z8,v!5
2p

k'
F 2

11e3Ae1 /e3

3expF2k'z1S e1
e3

D 1/2k'z8G
2exp@2k'uz2z8u#G . ~3.36b!

~c! If z.0 andz8.0,

x~k' ,z,z8,v!5
2p

k'

12e3Ae1 /e3

11e3Ae1 /e3
exp@2k'~z1z8!#.

~3.36c!

From these expressions it is easy to verify that Eq.~3.34!
leads to Eqs.~3.31! and ~3.32!, and therefore both method
give the same results. Furthermore, fort5t8, Eq. ~3.34! and
the Kramers-Kronig relation

pRex~k' ,z,z8,0!5PE
2`

1` Imx~k' ,z,z8,v!

v
dv

~3.37!

give the well-known static correlation@2#

b^F~r !F~r 8!&T

5H ur2r 8u21 if z,0 orz8,0

@ ur'2r'8u21~z1z8!2#21/2 if z.0 andz8.0,
~3.38!

which is, as expected, independent of the presence of
magnetic field.

C. Plasma in a disk with a magnetic field

Here we consider the model of a two-dimensional o
component plasma in a disk of radiusR with a magnetic field
normal to the plane where the disk lies. The particles inte
he

-

ct

through the two-dimensional Coulomb potential2 lnr. We
look for modes with frequencyv. The dielectric formalism
is also valid in this case. Only the definition of the plasm
frequency is slightly changed:vp5(2pq2n0 /m)

1/2. The
equation for the potentialF inside the disk is

e1DF50, ~3.39!

while outside the disk it is the usual Laplace equation.
polar coordinates (r ,u) the boundary conditions are

F→0 when r→1`, ~3.40a!

lim
r→R1

F~r !5 lim
r→R2

F~r !, ~3.40b!

e1
]F~R2,u!

]r
2 i e2

]F~R2,u!

r ]u
5

]F~R1,u!

]r
.

~3.40c!

As in Sec. III A, there are two types of solutions:
~1! If e1Þ0, F satisfies the Laplace equation inside a

outside the disk,

F~r !5HAmr
umueimu if r,R

AmR
2umur2umueimu if r.R,

~3.41!

and there are two possibles frequencies for each integem
(mÞ0), v5sgn(m)v6 , where sgn(m) denotes the sign o
m, and

v65~2V6AV212vp
2!/2. ~3.42!

Equating the total average energy of the mode tokBT gives

b^uAmu2&5
1

umuR2umu
v8

v82v
, ~3.43!

wherev is the frequency of the mode, andv8 the other root
of Eq. ~3.42!. The contribution from these modes t
^s(r ,t)s(r 8,t8)&T is

kBT(
m

umueim~u2u8!

~pR!2~v12v2!

3@v1e
2 i sgn~m!v2~ t2t8!2v2e

2 i sgn~m!v1~ t2t8!#.
~3.44!

~2! If e150,v25vp
21V2, and anyF satisfies Eq.~3.39!

inside the disk. However, writingF as a Fourier series in
eimu, boundary conditions~3.40! and Laplace equation fo
F outside the disk implies thatF50 outside the disk. The
situation is similar to the one in Sec. III A 2.F can be writ-
ten in the base of the eigenfunctions of the Laplacian, w
Dirichlet conditions on the boundary. Then equating the
erage total energy of each mode tokBT and following the
calculations from Sec. III A 2, we find the contribution from
these modes tôF(r ,t)F(r 8,t8)&T:

22pkBT
vp
2

V21vp
2GD~r ,r 8!cos@~vp

21V2!1/2~ t2t8!#,

~3.45!

whereGD now is the Green function of the Laplacian wit
Dirichlet boundary conditions on the disk:
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GD~r ,r 8!5
1

2p
@ lnur2r 8u2 lnur2~R/r 8!2r 8u#.

~3.46!

In two dimensions there is another mode corresponding
v50. The dielectric formalism does not applies here (e2
diverges whenv50). Dealing directly with the equations o
motion, we can show thatF50 outside the disk. Then th
contribution of this mode can be computed in the same w
as in the case e150. The contribution to
^F(r ,t)F(r 8,t8)&T is found to be

22pkBT
V2

V21vp
2GD~r ,r 8!. ~3.47!

Putting together all contributions gives

b^s~r ,t !s~r 8,t8!&T5(
m

umueim~u2u8!

~pR!2~v12v2!

3@v1e
2 i sgn~m!v2~ t2t8!

2v2e
2 i sgn~m!v1~ t2t8!#

1
V21vp

2cos@~vp
21V2!1/2~ t2t8!#

V21vp
2

3
1

8S pRsin
u

2D
2 . ~3.48!
d.

. J

J.

d

nd

v

to

y

For t5t8, the sum in Eq.~3.48! can be performed and th
static result@2#, independent of the magnetic fieldB is re-
covered,

b^s~r !s~r 8!&T52
1

8S pRsin
u

2D
2 . ~3.49!

IV. CONCLUSION

Since one-component plasmas have been obtained ex
mentally, it would be interesting if the static or dynamic
correlations could be measured and compared to the exp
sions obtained here. It should be noted that our calculati
give only the dominant term of the expansion of the corre
tions in powers of the distancer between the points. It ha
been shown that there are other terms in the asymptotic
pansion@18# of the time-dependent correlations~behaving
like r26 for the potential correlations in an infinite plasma!.
These algebraic corrections vanish in the static case.

ACKNOWLEDGMENT

The author wishes to thank B. Jancovici for useful disc
sions, and for reading the manuscript.
d,

s

, J.
@1# For a review of previous work, see Ph. A. Martin, Rev. Mo
Phys.60, 1075~1988!.

@2# B. Jancovici, J. Stat. Phys.80, 445 ~1995!.
@3# J. S. deGrassie and J. H. Malmberg, Phys. Rev. Lett.39, 1077

~1977!.
@4# L. R. Brewer, J. D. Prestage, J. J. Bollinger, W. M. Itano, D

Larson, and D. J. Wineland, Phys. Rev. A38, 859 ~1988!.
@5# J. J. Bollinger, D. J. Heinzen, F. L. Moore, W. M. Itano, D.

Wineland, and D. H. E. Dubin, Phys. Rev. A48, 525 ~1993!.
@6# C. S. Weiner, J. J. Bollinger, F. L. Moore, and D. J. Winelan

Phys. Rev. A49, 3842~1994!.
@7# M. D. Tinkle, R. G. Greaves, C. M. Surko, R. L. Spencer, a

G. W. Mason, Phys. Rev. Lett.72, 352 ~1994!.
@8# R. G. Greaves, M. D. Tinkle, and C. M. Surko, Phys. Re

Lett. 74, 90 ~1995!.
.

,

.

@9# D. H. E. Dubin, Phys. Rev. Lett.66, 2076~1991!.
@10# D. H. E. Dubin, Phys. Fluids B5, 295 ~1993!.
@11# D. H. E. Dubin, Phys. Rev. E53, 5249~1996!.
@12# B. Jancovici, J. Stat. Phys.39, 427 ~1985!.
@13# J. N. Tan, J. J. Bollinger, B. Jelenkovic, and D. J. Winelan

Phys. Rev. Lett.75, 4198~1995!.
@14# D. H. E. Dubin and T. M. O’Neil, Phys. Rev. Lett.60, 511

~1988!.
@15# P. M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!, Chap. 10.
@16# Ph. Choquard, B. Piller, R. Rentsch, and P. Vieillefosse

Stat. Phys.55, 1185~1989!.
@17# B. Jancovici, N. Macris, and Ph. A. Martin, J. Stat. Phys.47,

229 ~1986!.
@18# A. Alastuey and Ph. A. Martin, Europhys. Lett.6, 385 ~1988!.


